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Abstract. The crossover between the random walk and the self-avoiding walk limits of a 
large ring polymer is described using a direct renormalisation theory. The methods of field 
theory renormalisation are applied directly to the ring polymer system to calculate the 
mean square radius of gyration (R;& through first order in E = 4- (dimension of space). 
The expansion factor a2 for (RA),,,, is not a universal function of the natural scaling 
variable x that characterises the strength of the self-repelling (excluded volume) interaction. 
The crossover exhibited by the radius of gyration ratio R ( x )  = (RA)r,n.J(RA)llne is described 
by a universal scaling function of x and has a range space {fs R ( x )  G $ ( l  + % E ) }  that is 
bounded below and above by finite universal numbers representing the random and 
self-avoiding limits, respectively. 

1. Introduction 

The discovery (de Gennes 1972) that a large linear chain molecule has the same 
renormalisation symmetry as a certain class of critical phenomena enabled the renor- 
malisation group to be incorporated into the language of polymer physics. The 
renormalisation group theory has provided a detailed understanding of the linear 
polymer system from first principles. It is unfortunate that a similar understanding 
does not exist for the ring polymer system. A large ring polymer has the same 
renormalisation symmetry as the linear polymer and thus is susceptible to the methods 
of the renormalisation group theory (Prentis 1982). 

Ring polymers exist in nature as circular DNA molecules (Vinograd and Lebowitz 
1966). The circularity constraint, which characterises the ring polymer, is known to  
have a profound effect on the function of circular DNA in biological systems (Bauer 
et a1 1980). This realisation of ring polymers in nature, together with the recent 
synthesis of rings in the laboratory (Higgins et a1 1979, Geiser and Hocker 1980) and 
in the computer (Chen 1981, Baumgartner 1982), make a theoretical study of the 
ring polymer system more than a mathematical exercise. 

Previous work in the statistical mechanics of the ring polymer system has been 
confined to the ideal (random walk) or nearly ideal behaviour using the conventional 
many body cluster expansion (Casassa 1965). This cluster expansion is meaningless 
if one wants to understand the effects of the self-repelling (excluded volume) interaction 
in the self-avoiding limit. The renormalisation group theory has the capability to 
transcend the perturbation theory and provide an understanding of the self-avoiding 
behaviour from first principles. In spite of this capability, there exists little work 
(Lipkin et a1 1981, Prentis 1982) utilising the renormalisation group ideas in the ring 
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polymer system. Perhaps this neglect can be attributed to a mathematical complexity 
that is introduced into the ring polymer perturbation theory due to the circularity 
constraint. Each order in the ring polymer expansion contains an additional (Feynman) 
loop integration when compared with the corresponding order in the linear polymer 
expansion. 

In a previous paper (Prentis 1982), we have used a direct renormalisation theory 
(Witten and Schafer 1981) to understand the spatial correlations in a large ring polymer 
in the self-avoiding limit. This direct renormalisation formalism incorporates the 
concepts and methods of field theory renormalisation directly into the polymer problem. 
This formalism avoids the Lagrangian field theory isomorphism, thereby providing a 
unified, self-contained and more natural framework for understanding the polymer 
system from first principles. 

In the present paper, this direct renormalisation theory is used to calculate the size 
(radius of gyration) of a large ring polymer as a function of the self-repelling interaction. 
The results are correct through first order in E = 4 - (dimension of space). For three- 
dimensional space, experience in critical phenomena indicates that the E -expansion is 
an asymptotic series which provides reliable results in first order (Wallace 1976). The 
size of a ring polymer is determined by the mean square radius of gyration (RZ).  The 
natural scaling variable for describing the crossover behaviour is determined by the 
renormalisation group equation and is found to have the form 

x = ( g / g * ) (  1 - g / g * ) - E / 2 Y W N E ’ 2 .  (1.1) 

In this expression, the renormalised ‘coupling constant’ g is a measure of the strength 
of the self-repelling interaction and the renormalised variable N is proportional to 
the number of monomers. The quantities v and w are the conventional ‘critical’ 
exponents for the polymer problem and g* - O( E )  is the self-avoiding fixed point 
coupling. The random walk limit corresponds to x = O .  The self-avoiding limit is 
defined by x = 00. We are interested in the behaviour exhibited by the ring polymer 
system in the more realistic crossover regime corresponding to finite x. The crossover 
in a large polymer system is realised experimentally by changing the temperature 
and/or solvent quality. 

We find that the crossover from x = 0 to x = CO exhibited in the radius of gyration 
expansion factor a 2  is not universal. That is, the crossover cannot be described by a 
functiori only of the natural scaling variable x. In particular, a 2  = a 2 ( x ,  g). The form 
of this non-universal dependence on g is made explicit in the calculation. However, 
in the limit g << 1, this dependence on g becomes weak and we recover an approximate 
universal function a2(x, g )  = a2(x )  of x - g N E I 2 ,  Thus, in the limit N >> 1, g c  1, the 
renormalisation group prediction behaves in the same way that characterises the 
conventional two-parameter theory (Yamakawa 1971) of the polymer excluded volume 
problem. In the two-parameter theory, the polymer observables (in three-dimensional 
space) are assumed to be functions of a single variable t - where o is a microscopic 
measure of the excluded volume interaction and n is the number of monomers. This 
two-parameter approximation is known to be valid if n >> 1, U<< 1 and vn’ ’2  is finite 
(Lax et af 1978 and Tanaka 1980). 

However, in spite of these similarities, the precise connection between the renor- 
malised scaling variable x and the two-parameter variable z is not well established. 
The reason for this is that the renormalised interaction parameter g is a coarse grained 
interaction parameter that represents an effective excluded volume interaction on a 
macroscopic scale much greater than the monomer length. More specifically, g is 
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obtained from the renormalised four-point vertex function r(4) of the polymer field 
theory which is an infinite sum of all the irreducible diagrams representing the interac- 
tion between two polymer chains. In the language of polymers, g is proportional to 
the partition function of two polymer chains which is in turn related to the second 
virial coefficient. Thus g represents a macroscopic many body object that is a compli- 
cated function of the microscopic interaction characterised by z in the two-parameter 
theory. 

Indeed, previous attempts (Burch and Moore 1976, Lawrie 1976, Elderfield 1980) 
to relate x and z have been unsuccessful. The basic idea was first to assume x and z 
are simply related and then to fix the scale between x and z by forcing the small x 
expansion to fit the corresponding small z expansion in three-dimensional space. The 
results indicate that a consistent scale does not exist. 

Recently, des Cloizeaux (1981) has developed a direct renormalisation theory for 
polymers based on the explicit relationship between g and the two-chain partition 
function. In this renormalisation scheme, the relationship to the two-parameter theory 
characterised by z is well defined. Indeed, the renormalisation group prediction for 
the end-to-end distance expansion factor a*( z) of a linear polymer assumes a similar 
form and compares favourably with some of the two-parameter theory predictions. In 
addition, Oono and Freed (1982) present a detailed discussion of the validity of the 
two-parameter approximation in the language of scaling and the renormalisation group. 
They also discuss the many body nature of g and the futility in calculating the effective 
macroscopic interaction parameter x in terms of the microscopic parameter z. 

Crossover phenomena in the ring polymer system has not been studied previously 
using the renormalisation group theory. This paper represents the first to understand 
this crossover. We focus attention on a physical observable which is more interesting 
than a 2  from a theoretical (Zimm and Stockmayer 1949, Prentis 1982), experimental 
(Higgins et al 1979) and numerical (Chen 1981,1983) point of view. This observable 
is defined as the ratio R of the mean-square radius of gyration of a ring polymer to 
that of a linear polymer having the same number of monomers: 

R E (R&)rmg/(Rihine. (1 .2) 
This ratio is known to be bounded below by a universal random walk limit (Zimm 
and Stockmayer 1949) and bounded above by a universal self-avoiding limit (Prentis 
1982) having the values: 

R(O)=$ R (CO) = t(  1 +$& + O( E 2 ) ) .  (1.3) 
We find that the complete crossover between these two scaling limits is characterised 
by a universal function R ( x )  for N >> 1. If, in addition, g<< 1, then one may change 
variables from x to a2  and transform R ( x )  into a function R ( a 2 )  of another well 
defined experimental observable a2.  This is a consistent and well defined calculation 
containing no adjustable parameters and yields a result that can be directly tested in 
an experiment. Parametrising the crossover in terms of the observable a 2  completely 
avoids, and does not require any understanding of, the connection between the 
renormalised interaction parameter x and the conventional parameter z, neither of 
which can be directly measured. 

Section 2 contains a brief review of the renormalisation group results describing 
the self-avoiding limit behaviour of the ring polymer system. In 9 3, the general solution 
to the renormalisation group equation is given which provides a description of the 
crossover behaviour. Further discussion is presented in Q 4. 
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2. The self-avoiding limit 

In this section, a brief summary of our previous renormalisation group theory of the 
ring polymer system in the self-avoiding limit will be presented. For details on the 
model, the perturbation theory and the renormalisation, the reader is referred to the 
original paper (Prentis 1982). 

The model used to represent the ring polymer is a self-repelling random polygon 
on a lattice. The lattice is taken to be a d-dimensional cubic lattice with a lattice 
spacing 1. A random n-gon in d dimensions is defined by a sequence of points ri, 
i = 0, 1, . . . , n, on the lattice from ro to r, subject to the ring and connectivity constraints 
ro = r, and lriil - r,l= 1, respectively. The self-repelling condition is represented by a 
short-ranged repulsive potential U( ri - r j )  between every pair of monomers. 

The spatial correlations in the ring are determined by the correlation function 
( p ( x ) p ( y ) ) ,  where p ( x )  is the local density of monomers at x. For a ring with n 
monomers, these correlations are measured in a scattering experiment at wavevector 
q via the structure factor S ( q ,  n ) .  Mathematically, S ( q ,  n )  is the Fourier transform of 
( p ( x ) p (  y ) ) .  The radius of gyration of the ring is the correlation length (second moment) 
of S ( q ,  n ) :  

(2.1) 

Our previous study utilised a renormalised perturbation theory to understand the 
behaviour of (R&)ring in the self-avoiding limit. The renormalisation of the ring polymer 
perturbation theory is a process which converts the ill behaved perturbation expansion 
into a renormalised expansion which makes sense in the self-avoiding limit and can 
be used to extract non-perturbative information. It is a process whereby the irrelevant 
short distance (ultraviolet) details of the theory (which manifest themselves as poles 
in E = 4- d in this formalism) are subtracted out of the perturbation theory and 
absorbed into a redefinition (rescaling) of the polymer variables. We merely state the 
final result for the radius of gyration of a large ring polymer obtained from the two-loop 
order diagrammatic polymer perturbation theory using the direct renormalisation 
scheme. For details, see Prentis (1982). The perturbation theory for (R&)ring is an 
expansion in the renormalised coupling constant g and also is a function of the 
renormalised monomer number N and momentum scale K :  

( R i j r i n g  = - d  a In S ( q ,  n)/aq21q=o. 

( R ~ ) r i n g = ~ d ~ - 2 ( 1 + I g ( l - c ) ) N ( 1 - I g  lnN)+O(g’,  E’ ,  gE) (2.2) 

where 

In this expression, c = 0.577 is the Euler constant, z2 and z3 are the chain length and 
coupling constant renormalisation factors and depend only on g,  T~ = eSc/1’ where s, 
is the critical chemical potential for which ( n )  + CO and a d  is the surface area of a unit 
sphere in d dimensions. In the original renormalisation scheme, we employed the 
Laplace (grand canonical) representation of the ring polymer perturbation theory. 
This representation transforms the perturbation theory into an expansion which is 
mathematically identical to a Feynman graph expansion. The utility of this representa- 
tion is that the perturbation theory is susceptible to the well developed methods of 
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field theory renormalisation. These include a well defined prescription for the calcula- 
tion of Feynman integrals (dimensional regularisation) and for the renormalisation of 
the perturbation theory (minimal subtraction) (Amit 1978). The result stated in 
equation (2.2) is obtained from a simple inverse Laplace transformation of this grand 
canonical perturbation theory. 

A vital property that emerges from the renormalisation group machinery is that 
in the self-avoiding limit, the renormalised coupling constant g takes on the well 
defined fixed point value given by Prentis (1982) 

g* = - $ E  + O( E 2 ) .  (2.4) 

In this limit, the expression for the radius of gyration in equation (2.2) is the perturbative 
representation of a scaling law characterised by the power law behaviour: 

( R & ) r i r r g -  N2” (2.5) 

v = ;( 1 +i& + O( E * ) ) .  

with the ‘critical’ exponent 

(2.6) 

A similar calculation for the linear polymer system yields 

( R ~ ) l i n e = f d K - 2 ( 1 + q g ( ~ - c ) ) N ( 1 - - g  In N ) + O ( g 2 ,  e2 ,  Eg). (2.7) 

This result, together with the equation (2.2), allows one to construct the radius of 
gyration ratio: 

R = ( R ~ ) , i n g l ( R ~ ) l i , , = ~ ( l - ~ g ) + O ( g 2 ,  g E ) *  (2.8) 

In the self-avoiding limit, g = g* = -$E  + O ( E ~ ) ,  and we obtain the universal ratio: 

R = 4 [ 1 + % ~ + 0 ( ~ ~ ) ] = 0 . 5 6 8  ( d = 3 ) .  (2.9) 

It would be incorrect to use equation (2.8) as a representation of the crossover 
behaviour from R = f to R = i(1 + % E )  as g varies from g = 0 to g = g*. It must be 
emphasised that equation (2.8) is only a perturbative representation of R and by itself 
cannot be used to extract the complete scaling behaviour. A more detailed analysis 
of the non-perturbative structure of the polymer theory using the renormalisation 
group equation is necessary in order to extract information on the non-perturbative 
scaling behaviour of R. This analysis, which follows in 9 3, will demonstrate that g is 
not the correct scaling variable to use for a description of crossover phenomena. 

3. The crossover 

A complete understanding of the crossover behaviour in the ring polymer system 
emerges upon solving the field theoretic renormalisation group equation for all values 
of the coupling g. To find this general solution, we utilise the original approach of 
Bruce and Wallace (1976) for critical phenomena as adapted to the polymer problem 
by Elderfield (1980). However, our method is distinguished from these previous 
approaches in that we use the renormalisation group equation describing the renor- 
malised theory rather than the bare theory. We also emphasise that our direct 
renormalisation theory provides a self contained and thus a simpler and more natural 
framework for understanding crossover phenomena in the polymer system. It should 
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be noted that there also exists an alternative direct renormalisation group calculation 
of the crossover behaviour in the linear polymer system by Oono and Freed (1982). 

The renormalisation group equation is a statement of the renormalisation symmetry 
of the polymer system. It is a consequence of the renormalisability of the polymer 
theory. It transcends the perturbation theory so as to enable one to understand the 
non-perturbative structure of the scaling behaviour of the theory. The renormalisation 
group equation for the grand canonical radius of gyration (Prentis 1982) is easily 
Laplace transformed into the following renormalisation group equation describing the 
scaling behaviour of the radius of gyration of a large ring (or linear) polymer with n 
monomers: 

[ K  alaK+p(g)  wag+ y(g)n a l an I (R3=0 .  (3.1) 

In our direct renormalisation scheme (Prentis 1982), the Wilson functions p (g )  and 
y(g) for the ring (or linear) polymer system assume the form: 

P (g )  = -Eg--g2+0(g3) y(g) = g + (3.2) 

This homogeneous equation is conveniently solved by the method of characteristics 
(Amit 1978). If one defines the following set of functions (renormalisation group 
recursion relations) of an arbitrary scale parameter b 

~ ( b )  = b K ,  

then the solution to the renormalisation group (equation (3.1)) satisfies the simple 
relation 

( R W ,  g, K )  =(Rk)(n(bL K ( b ) ) .  (3.4) 
This relation is a realisation of the fundamental idea underlying the theory of renormali- 
sation. That is, to provide a relation which exhibits the structure of the theory at 
different length (momentum) scales. 

The integration of equations (3.3), using the expansions of p (g )  and y(g) in 
equation (3.21, result in the following relations, correct through first order in E 

The fixed point coupling g*, the correction to scaling exponent w and the polymer 
size exponent Y are given by the identities (Prentis 1982): 

p(g*) = 0 * g* = - -$E + 0 ( & 2 )  

w =dp(g)/dgl,*= E +0( s 2 )  

v = ( y(  g*) + 2)-l = $( 1 + i E  + O( E 2 ) ) .  

With this solution of the renormalisation group equation, the complete scaling 
behaviour of (R?Jring can now be understood through order E. Using the perturbative 
representation of (equation (2.2)) in conjunction with the non-perturbative 
renormalisation group relation (equation (3.4)), one may write 

(R&),i,g=~d(Kb)-2(1 + ig (b ) ( l  -c))b2N(b)(1 - ig(b)  In b 2 N ( b ) ) .  (3.7) 
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Note that for N >> 1, the polymer perturbation theory is meaningless. However, if one 
makes the natural choice b2N(b)  = 1, then the dangerous In N terms are suppressed 
and effectively summed into exponentiation by the renormalisation group. With this 
choice, the crossover behaviour of a large ring polymer to order E is described by the 
following scaling law: 

(Rg) , i , ,=N~-~( l  - g / g * ) ( 2 ” - ’ ) / “ ”  f ( x )  (3.8) 

f ( x )  = % d ( l  - p ( x ) ) ( ’ - 2 ’ ) I w u  [1 +tg*(1- C)P(X) l  

where the scaling function f ( x )  is given parametrically as 

(3.9) 

and 
p ( x ) ( l -  P ( X ) ) - E / 2 W Y  = x = ( g / g  * 1- g I g * ) - E / 2 W Y N E / 2  (3.10) 

The complete crossover is described in terms of the natural scaling variable x ,  in 
addition to a non-universal prefactor dependence on g .  Note that p ( x )  is a bounded 
function from p ( 0 )  = 0 to p ( 0 0 )  = 1. As a special case, in the random walk ( x < <  1) and 
the self-avoiding ( x  >> 1) limits, we obtain the following familiar power law behaviour 
(with corrections): 

(3.11) 

An alternative non-parametric representation of the crossover behaviour is obtained 
by using the &-expansion of the exponents v and w,  together with g * ,  and rearranging 
terms consistently to first order in E. The result must be expressed in terms of the 
natural scaling variable x (and the non-universal factor 1 - g / g * )  as dictated by the 
renormalisation group equation. We find 

(3.12) (R?i ) r ing  = N K - ~ ( ~  - g / g * ) ” “ f ( x )  

where 

f ( x )  = &d[l+  x (  1 + X)E/8]1/4[1 -A&( 1 - c ) x / (  1 + x ) ]  (3.13) 

and x is given in equation (3.10). This compact and convenient representation of the 
crossover behaviour is equivalent to that utilised by Oono and Freed (1982) to study 
the crossover in the linear polymer system. However, for numerical accuracy and 
comparison with experiment in three-dimensional space, it is advantageous to retain 
the parametric representation of the crossover. This enables one to use the accurate 
pure number values v = 0.588 * 0.0015 and wv = 0.470 * 0.025 as determined by the 
resummation of their &-expansions for d = 3 (Le Guillou and Zinn-Justin 1980). These 
values for v and w represent a significant improvement over their first-order E -  

expansions, especially for the exponent w which has a particularly poorly behaved 
&-expansion. 

A more useful physical observable is the radius of gyration expansion factor CY’ 
defined by 

a 2  = (R6)/(R&)Ig=,,. (3.14) 

From equations (3.8) and (3.91, we find to order E 

(3.15) 
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where p ( x )  is given in equation (3.10). It is significant that a 2 ( x ,  g) is not a universal 
function of the scaling variable x only. This non-universality is a contradiction to the 
convehtional ‘two-parameter’ theory (Yamakawa 1971) of the polymer excluded 
volume problem. This same non-universality has also been observed and discussed in 
the context of the linear polymer system (Oono and Freed 1982). For small g, the 
expansion factor a 2 ( x ,  g) = a 2 ( x )  is approximately a universal function of x = 
(g/g*)N”’. A plot of a 2 ( x )  for d = 3  appears in figure 1. 

I 1 1 I I J 
0 40 80 

X 

Figure 1. The radius of gyration expansion factor a* for a ring (full curve) and a linear 
(broken curve) polymer as a universal (for g <c 1) function of the natural scaling variable x. 

A very useful and interesting theoretical and experimental quantity is the radius 
of gyration ratio of a ring to that of a linear polymer having the same number of 
monomers. To calculate this ratio, we need the crossover scaling function for the 
radius of gyration of the linear polymer system. Although this function has been 
calculated previously (Oono and Freed 1982, Elderfield 1980), we require the form 
it assumes in the renormalisation formalism used here. The generality of the renormali- 
sation group analysis of this section allows this function to be constructed simply and 
immediately from the perturbation expansion given in equation (2.7). To order E ,  we 
find 

(Rk)ljne= N K - 2 ( 1  - g / g * ) ‘ 2 y - 1 ) ’ w y  hine(x) (3.16) 

where 

(3.17) 

p(x) is given in equation (3.10) and the exponents v and w are identical to those in 
the ring system. A graph of the expansion factor (Y?,,~(X) for the linear polymer system 
appears in figure 1. Using equations (3.9) and (3.17), the radius of gyration ratio can 
be written to first order in E as 

~ ( x )  3 (Rk)ring/(Rk)iine +%EP(x)I (3.18) 

with O s p ( x )  s 1 determined by equation (3.10). Thus, unlike the individual radii of 
gyrations of a ring and a linear polymer, the crossover of their ratio R ( x )  is described 
by a universal function of the scaling variable x. The range space of R(x)  is bounded 
by the finite limits characterising the universal random walk ratio R ( 0 )  = 0.5 and the 
universal self-avoiding ratio R ( a )  = 0.568(d = 3). 

It is convenient to re-express the polymer observables that depend on the experi- 
mentally unknown scaling variable x in terms of a more directly measurable quantity, 
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namely the expansion factor a ’( x ,  g) given in equation (3.15). If g << 1 , then a ’( x, g )  
a’(x),  and the radius of gyration ratio R ( x )  can be transformed into a universal 
function of a’. There is experimental evidence that the approximation a ’ ( x ,  g) = a ’ ( x )  
is valid (Oono and Freed 1982) for the large polymer system and thus R ( a ’ )  provides 
a realistic candidate for experimental observations. A graph of R ( a ’ )  for d = 3 appears 
in figure 2. As mentioned previously, an alternative non-parametric representation 
of R ( a 2 )  can be obtained upon expanding the exponents Y, w and all expressions 
consistently to order E.  The result is: 

R(a’) =$[l +%&( (a8 -  1)/a8)].  (3.19) 

2 L 
a 2  

Figure 2. The radius of gyration ratio R =(R&)r,ng/(R&),,ne as a universal (for g<< 1) 
function of the ring polymer expansion factor. 

4. Discussion 

We have calculated the crossover between the random and the self-avoiding behaviour 
of the radius of gyration of a large ring polymer. The results, correct through first 
order in E ,  have been obtained from first principles using a direct field theoretic 
realisation of the renormalisation group ideas. The expansion factor for the mean 
square radius of gyration is not a universal function of the natural scaling variable x. 
The non-universality appears via a dependence on g which becomes weak for g<< 1.  
In contrast, the radius of gyration ratio R ( x )  of a ring to a linear polymer is a universal 
function of x. Furthermore, R ( x )  is bounded above by the finite self-avoiding limit 
R (a) = $( 1 + B E )  and below by the random walk limit R (0) = 1. The convergence of 
R ( x )  to well defined and universal finite limits is a distinct advantage in experimental 
observations. An important prediction of this convergence is that the polymer system 
should be within one percent of the self-avoiding limit R ( m )  if the ring expansion 
factor a 2 1.6. 

For the linear polymer system, there exists a similar and often studied ratio which 
does not exhibit a useful crossover behaviour. This is the ratio A(x)  of the radius of 
gyration to the end-to-end distance of a large linear polymer. In the random and 
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self-avoiding limits (Witten and Schafer 1978), A(x)  is known to assume the universal 
values: 

The complete crossover behaviour of this ratio, to order E ,  follows simply from the 
renormalisation group analysis presented here. The generality of this analysis allows 
the immediate construction of the crossover function: 

A ( x ) = A ( l - & & p ( ~ ) ) .  (4.2) 

Here O s p ( x ) s  1 is given in equation (3.10). This example illustrates the common 
structure of any given universal observable and the simplicity to obtain this form given 
the asymptotic (fixed point) limit. 

Unfortunately, in this example, the predicted range of A(x)  is too small for 
experimental resolvability. This property is in contrast to the much larger range space 
of the ratio R ( x )  involving the ring polymer (equation (3.18)). This is a manifestation 
of the greater sensitivity to the excluded volume interaction that exists in the ring 
system when compared with the linear polymer system. This sensitivity is to be expected 
due to the more compact structure assumed by the ring polymer molecule. It is this 
sensitivity that endows the ring polymer system with properties, such as R ( x ) ,  that 
render it more susceptible to experimental observation. 

There exists a controversy regarding the upper bound R (03) characterising the 
self-avoiding limit of the radius of gyration ratio R ( x ) .  The recent series (Chen 1981, 
1983) of computer experiments to simulate the statistics of large ring and linear 
polymers predict that R(m)  = 0.568. This result is remarkably identical to our renor- 
malisation group prediction of R(Q:) =0.568 for d = 3 (equation (3.18)). The 
phenomenological ‘swollen gaussian’ models of the polymer system lead to results that 
are inconsistent with one another and with the computer study of rings and chains 
(Chen 1983, Baumgartner 1982). 

Although there exist large ring polymers in biological systems, such as circular 
DNA, the synthesis of large ring molecules in the laboratory appears to be very difficult 
(Geiser and Hocker 1980, Higgins er al 1979). The neutron scattering experiment 
(Higgins et a1 1979) using synthetic cyclic and linear poly (dimethylsiloxane) predicts 
a radius of gyration ratio of 0.526iz0.05. Although consistent with our renormalisation 
group prediction, it is uncertain whether the conditions of the experiment (solvent, 
polymer length, polydispersity) are sufficient to realise the asymptotic limit x = Q: 

(Edwards et al  1983). In addition, the existence of knotted structures in the ring 
polymer system presents a very complex and interesting topological constraint whose 
effect on the ring behaviour is difficult to ascertain (Elderfield 1982). 

The present work describing the crossover from the random to the self-avoiding 
behaviour in the ring polymer system provides additional data that is more realisable 
in laboratory experiments. We hope that this work will stimulate further investigation 
into understanding the behaviour of the ring polymer system. 
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